A bootstrappable, bio-plausible design for visual pose stabilization

Andrea Censi, Shuo Han, Sawyer Fuller, Andrew Straw, Richard Murray
California Institute of Technology

This talk includes unpublished results -- see our recent draft at:
www.cds.caltech.edu/~hanshuo/
www.cds.caltech.edu/~andrea/
What engineering can learn from neurobiology

- Fast behavior from slow computational elements.
- Robust behavior from noisy processing.
- Coherent decisions from extremely distributed computation.
- Data fusion from disparate senses.
- Learning
- Consciousness
Visual processing in the fruit fly

- A well studied example of biological control architecture.
- We know something about visual information processing, but we miss both the details (role of each neuron) and the big picture (integrative model).

What is remarkable
- **Slow** computation, **fast** reaction
 - time constant of photoreceptors is comparable to reaction time.
- **Noisy** sensors/computation, **robust** reaction
- **distributed** computation using neurons.

Can we design control laws for such an architecture?
Visual pose stabilization (servoing, homing)

- Drive the agent from the current image y to a given goal image g.

![Diagram showing the process of visual pose stabilization](image)

- Controller
 - Input: goal image g
 - Output: force, torque f, τ

- Rigid body dynamics
 - Input: f, τ
 - Output: pose, velocities r, p, ω, ν

- Vision sensor
 - Input: pose, velocities r, p, ω, ν
 - Output: current image y, \dot{y}

- World geometry
 - Input: current image y
 - Output: goal image g
Variations of the same problem

visual attitude stabilization
(pure rotational case)

hovering
(goal image is delayed image)

visual homing
(memorized goal image is “far”)

visual navigation
Fontanelli et al., 2009
Notations

Robot: fully actuated, 2nd-order system
- Pose (attitude + position): $q = (r, p) \in \text{SE}(3) = \text{SO}(3) \times \mathbb{R}^3$ (strictly, $\text{SO}(3) \otimes \mathbb{R}^3$)
- Body velocities: (ω, v)
- Control inputs: torque and force (τ, f)

Sensor: an omnidirectional camera
- Direction: on a unit sphere $s \in \mathbb{S}^2$
- Goal image (intensity profile): $g(s) : \mathbb{S}^2 \to \mathbb{R}$
- Current image: $y(s) : \mathbb{S}^2 \to \mathbb{R}$

Environment: convex
- Distance to the objects: $\sigma(s) : \mathbb{S}^2 \to \mathbb{R}$
- Its reciprocal, "nearness", is sometimes used:
 \[\mu(s) \triangleq 1/\sigma(s) \]
- Nearness is an hidden state in the dynamics of y:
 \[\dot{y} = \mu(s) \nabla y^* v + (Sy)^* \omega \]
Solutions #1: State estimation
- Estimate the current pose q (by finding the best match between y and g)
 $$q = \arg \min q \| y - g \circ q \|^2$$
 Rotated + translated version of g
- Then drive the agent towards the goal:
 $$q \xrightarrow{\xi} q_g$$
- Not always possible: needs to know the geometry of the environment, including the nearness.

Solution #2: point features in image space
- Extract point features s_i
- Solve correspondences s_i (current image) $\leftrightarrow s_i^*$ (goal image)
- Control law: depends on $(s_i - s_i^*)$

[Booij et al, ICRA'07]

• Combinatorial problem not implementable on a neural substrate.
Feature-free image space approach

Control law based on images directly

Minimize the following metric in the image space:

\[J(q) = \frac{1}{2} \langle (y - g)^2 \rangle \]

"\[\langle \ldots \rangle \]" denotes integral on the sphere

- The gradient flow for this cost function depends on the nearness \(\mu(s) \)

Related work

- Kernel-based visual servoing (Kallem, IROS’07)
- Different descent methods (Collewet, ICRA’08)
- Using mutual information (Dame, ICRA’09)

What they did not show

- Rigorous convergence proofs
 - Is minimizing \(J \) the same as going to the goal pose?
 - Can we do it without the knowledge of \(\mu(s) \) (environment geometry)?
- Control of a second-order system (inputs are torques and forces)
Question: is $y = g$ equivalent to $\text{pose} = \text{goal pose}$?

- Sufficient condition: the metric J is strictly convex near the goal

$$J(q) = \frac{1}{2} \langle (y - g)^2 \rangle$$

- Can be determined by requiring the 6×6 Hessian matrix to be positive definite

$$C(y, \mu) = \begin{bmatrix}
\langle SySy^* \rangle & \langle \mu Sy \nabla y^* \rangle \\
\langle \mu \nabla y Sy^* \rangle & \langle \mu^2 \nabla y \nabla y^* \rangle
\end{bmatrix} > 0 \quad Sy \triangleq s \times \nabla_s y$$

- This means the observation will change in every direction of motion.
Theorem: For the 2nd-order rigid body system:

\[
\begin{align*}
\dot{r} &= r (\omega)^\wedge, \\
\Pi \dot{\omega} &= (\Pi \omega) \times \omega - \epsilon \omega \omega + \tau, \quad \epsilon_{\omega}, \epsilon_{v} \geq 0 \\
\dot{p} &= rv, \\
m \dot{v} &= m v \times \omega - \epsilon_{v} v + f
\end{align*}
\]

the following control law is locally asymptotically stable \((y \to g, q \to q_{g})\)

\[
\begin{align*}
\tau &= \langle (Sy) (g - y) \rangle - k_{d} \langle (Sy) \dot{y} \rangle, \\
f &= \alpha \langle (\nabla y) (g - y) \rangle - \alpha k_{d} \langle (\nabla y) \dot{y} \rangle
\end{align*}
\]

if the modified contrast condition holds

\[
\begin{bmatrix}
\langle Sy Sy^* \rangle \\
\langle (\frac{\alpha}{2} + \frac{\mu}{2}) \nabla y Sy^* \rangle \\
\langle (\frac{\alpha}{2} + \frac{\mu}{2}) \nabla y Sy^* \rangle \\
\alpha \langle \mu \nabla y \nabla y^* \rangle
\end{bmatrix} > 0
\]

Note: the CDC paper proves the case of pure rotation. For SE(3), see our submission to ICRA’10, available on our websites.
The PD control law

Proportional-derivative control law:

\[
\begin{align*}
\tau &= \langle (Sy)(g - y) \rangle - k_d \langle (Sy) \dot{y} \rangle, \\
f &= \alpha \langle (\nabla y)(g - y) \rangle - \alpha k_d \langle (\nabla y) \dot{y} \rangle
\end{align*}
\]

- \(S \) and \(\nabla \) are differential operators (on the sphere)

Proportional part:
- similar to the gradient of the quadratic metric
- \(J(q) = \frac{1}{2} \langle (y - g)^2 \rangle \)
- but without nearness.

Derivative part:
- similar to the least-squares velocity estimation from \(y \) and \(\dot{y} \)
- \(\dot{y} = \mu(s) \nabla^* v + (Sy)^* \omega \)
- but without the matrix inverse.

Comments
- No explicit (point) feature extraction
- Does not depend on nearness.
- Bilinear/quadratic in \(g, y, \) and \(dy/dt \).
- Sparse tensors \(A, B \)

Diagram

Tensor contraction:

\[
\begin{align*}
\tau^k &= A^u_k w^v y_u, \\
f^k &= B^u_k w^v y_u
\end{align*}
\]
Visual simulation: a software package ‘fsee’ (by A. Straw)

- Based on the fruit fly Drosophila
- Correct disposition of the 1400 “pixels” (ommatidia) of the compound eye
- Spatial Gaussian blurring
- Temporal response of photoreceptors
Convergence results

Example run

Convergence statistics

Still get > 50% convergence for initial errors = (30 deg, 3 m)
Bootstrapping the control law

The learning problem

- The control strategy is a tensor product for some $n \times n \times 3$ tensors A, B.
- Can we learn A, B?

Why learning?

- **Engineering**: writing A, B explicitly requires to know the intrinsic calibration of the camera; learning directly A, B bypasses camera calibration.
- **Biology**: encoding a learning law is cheaper than encoding $n \times n \times 3$ coefficients.

How? We found a very simple solution based on unsupervised Hebbian learning:

- Generate random forces and torques.
- Learn A, B using Hebbian learning of y, \dot{y}, and (τ, f)

Note: the CDC paper uses supervised backpropagation.
Conclusions

We solved the problem of visual stabilization on SE(3) on a bio-plausible architecture

- without extracting features
- we proved it works even though distance is not observable
- parallelizable, simple control law respects the constraints of a bio-plausible computation
 - and also GPU computation!
- the control law can be bootstrapped (learned unsupervisedly)
 - allows auto-calibrating system.

Current research directions

- Same approach for more complicated problems, such as obstacle avoidance.
- Using these models for understanding the behavior of fruit flies.

Note: visit our websites for draft containing the results for SE(3):
www.cds.caltech.edu/~hanshuo/
www.cds.caltech.edu/~andrea/