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Abstract—This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera just
by waving it around. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time
correlation of the luminance signal for a subset of the pixels. We show that, if the camera undergoes a random uniform motion, then
the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to
formalizing calibration as a problem of metric embedding from non-metric measurements: we want to find the disposition of pixels on
the visual sphere, from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional
scaling (MDS) that has so far resisted a comprehensive observability analysis (can we reconstruct a metrically accurate embedding?)
and a solid generic solution (how to do so?). We show that the observability depends both on the local geometric properties (curvature)
as well as on the global topological properties (connectedness) of the target manifold. It follows that, in contrast to the Euclidean case,
on the sphere we can recover the scale of the points distribution, therefore obtaining a metrically accurate solution from non-metric
measurements. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric
information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional),
and we obtain results comparable to calibration using classical methods. Additional synthetic benchmarks show that the algorithm

performs as theoretically predicted for all corner cases of the observability analysis.

Index Terms—intrinsic camera calibration, metric embedding, catadioptric cameras, pin-hole cameras, fish-eye cameras

1 INTRODUCTION

In many applications, from classic photogrammetry
tasks to autonomous robotics, camera calibration is a
necessary preliminary step before using the camera
data [1]. Calibration is necessary even for off-the-shelf
cameras, as the properties of an optical system typi-
cally differ substantially from the stated manufacturer’s
specifications. Extrinsic camera calibration is concerned
with recovering the pose (position and orientation) of
the camera with respect to another camera, or another
reference frame of interest. Intrinsic camera calibration
is concerned with estimating the origin and direction of
the line of sight of each pixel; this information allows us
to put into correspondence the image of an object with
the position of the object in the world. Some scientific
applications require estimating other characteristics of
the optical system, such as the point-spread function. In
this paper, we focus on intrinsic camera calibration for
central cameras.

In a central camera, the lines of sight of every pixel
intersect in a single point. Therefore, the intrinsic calibra-
tion information consists of the direction of each pixel
on the visual sphere (S?). If a camera is non central,
then one needs to know, for each pixel, also its spatial
position (in R®) in addition to its direction (in S?). A
non-central camera can be approximated as a central
camera only if the displacement of each pixel’s origin
is negligible with respect to the distance to the objects
in the scene. This assumption is generally satisfied in
applications such as robotics, but might not be satisfied
for more uncommon applications and optical systems.
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A general description of how the properties of lenses,
mirrors, and sensors contribute to the geometry of the
optical system is outside of the scope of this paper; a
recent tutorial is given by Sturm et. al. [2].

Established techniques for intrinsic calibration: The most
widely used techniques for intrinsic camera calibration
(from now on, simply “calibration”) require the use of a
known calibration pattern, and that the cameras optics
can be well represented by a restricted family of models.
Several calibration software tools are available online as
open source. The Matlab Calibration Toolbox [3] works
for pin-hole cameras and implements a mix of tech-
niques appeared in the literature [4, 5]. The model used
for pin-hole cameras is parametrized by the center of
projection, the focal length, and radial and tangential dis-
tortion, which accounts for the possibility of the image
sensor being non perpendicular to the optical axis. Other
calibration toolboxes [6-13] can be used for calibrating
omnidirectional catadioptric cameras, obtained by plac-
ing a mirror on top of a conventional camera, such
that the optical axis coincides with the mirror’s axis, or
with fish-eye cameras (dioptric). The parameters of the
model are the center of projection in image coordinates
and the profile of the radial distortion. These methods
are relatively simple to use. In most of them, the user
prints out a calibration pattern consisting of a black
and white checkerboard, and collects several pictures
of the pattern from different points of view. A semi-
interactive procedure is used to identify the corners
of the calibration pattern. Given this information, the
software automatically solves for the calibration param-
eters. The algorithms rely on the fact that the pattern is
known to lie on a plane, which allows recovering the
parameters of the homography describing the world-to-
image transformation, and that the nonlinear parts of the
model (e.g., distortion) are simple enough that they can



be recovered using generic nonlinear optimization.

Innovative calibration techniques: Recently, there have
been several works to improve on these techniques, to
make them more flexible by enlarging the family of
optics considered, or making the calibration procedure
more convenient. Grossberg and Nayar [14] describe
a method for calibrating an arbitrary imaging system,
in which the pixels are allowed to have an arbitrary
configuration on the visual sphere, that is based on an
active display. Espuny and Gil [15] describe a technique
that does not require a known image pattern, but is
based on known sensor motion.

Calibration in robotics: The last decade has seen the
introduction of autonomous robotic systems where nav-
igation and object recognition are performed with vision
sensors. In these systems, precise calibration is needed
to ensure the safety of operation. Moreover, for robots,
calibration is considered a “lifelong” activity that should
be carried as autonomously as possible, as eventually
any equipment degrades and must be re-calibrated over
the course of its operating life; therefore, techniques that
allow autonomous unsupervised calibration are espe-
cially valuable. Several calibration techniques have been
designed to run autonomously embedded in a robotic
architecture (e.g., [16, 17]); in these systems, a reduced
set of camera calibration parameters (e.g., focal length)
can be treated as another state variable, and then jointly
estimated by a Bayesian filter together with the other
states, such as the robot pose and the features in a map.

Calibration by correlation: In this paper, we will describe
an approach to intrinsic camera calibration based exclu-
sively on low-level statistics of the raw pixel streams,
such as the inter-pixel correlation. To the best of our
knowledge, Grossmann et. al. [18] were the first to pro-
pose this idea for the problem of camera calibration, al-
beit they were inspired by work done in developmental
robotics and related fields [19-21].

The basic premise is that the statistics of the raw pixel
stream contain information about the sensor geometry.
Let y;(t) be the luminance perceived at the i-th pixel at
time ¢. If we compare the sequences {y;(¢)}; and {y;(¢)}+
for the i-th and j-th pixel, we expect to find that they are
more similar the closer the two pixels are on the visual
sphere. The geometry of the sensor can be recovered
if one can find a statistics of the two sequences that
is precisely a function of the pixels distances. More
formally, let s; € S? be the direction of the i-th pixel
on the visual sphere, and let d(s;,s;) be the geodesic
distance on the sphere between the directions s; and s;.
Let ¢ : RT x RT — R indicate a real-valued statistics of
two sequences of length T. For example, the statistics ¢
can be the sample correlation, the mutual information,
or any other information-theoretical divergence between
two sequences, such as the “information distance” [18].
Define the similarity Y;; between two pixels using ¢:

Yij = o({yi(t)}e, {y; () }+)-

The assumption that must be verified for the method
to work, which we will call the monotonicity condition, is
that the similarity is a function f of the pixel distance:

Yij = f(d(si,s5)), 1)

and that this f is monotonic, therefore, invertible.

Grossmann ef. al. assume to know the function f,
obtained with a separate calibration phase, by using a
sensor with known intrinsic calibration experiencing the
same scene as the camera being calibrated. Therefore,
using the knowledge of f, one can recover the distances
from the similarities: d(s;, s;) = f~1(Y;;). They describe
two algorithms for recovering the pixel positions given
the inter-pixel distances. The first algorithm is based
on multidimensional scaling (which we will recall in the
following sections) and solves for all pixel directions at
the same time. The authors observe that this method is
not robust enough for their data, and propose a robust
nonlinear embedding method, inspired by Sammon [22]
and Lee et. al. [23]. This second algorithm is iterative
and places one pixel per iteration on the sphere, trying
to respect all constraints with previously placed points.

Compared with traditional calibration methods, the
calibration-by-correlation approach is attractive because
it does not require a parametric model of the camera
geometry, control of the sensor motion, or particular
properties of the scene. However, the results reported
by Grossmann et. al. do not compare favorably with
traditional methods. The authors focus their quantitative
analysis mainly on the accuracy of the estimation and
inversion of the function f. They find that, for the
information distance, f is reliably invertible only for
d(si,sj) < 30°.! For large field of view, the estimated
distributions appear significantly “shrunk” on the visual
sphere.? Moreover, they find that, in practice, the func-
tion f is sensitive to the scene content; in their data,
they find that applying the function f~! estimated with
a calibration rig to the data taken from a different camera
leads to over-estimation of the angular distances.?

Contribution: In this paper, we start from the same
premise of Grossmann et. al., namely that it is possible
to find a statistics of the pixel stream that depends on
the pixel distance. However, rather than assuming the
function f known, we formulate a joint optimization
problem, in which we solve for both the directions {s;}
and the function f. In this way, there is no need for a
preliminary calibration phase with a sensor of known
geometry. However, the problem becomes more chal-
lenging, requiring different analytic and computational
tools.

Paper outline: Section 2 gives a formal description of
the joint optimization problem. Section 3 discusses the
conditions under which one can expect a monotonic
relation between pixel distance and pixel statistics. We
show that, if the camera undergoes uniform random
motion, then necessarily all pairwise statistics between
pixel values must depend on the pixel distance only.
This suggests that a good way to collect data for camera
calibration is to wave it around as randomly as possible,
a theory we verify in practice.

Section 4 gives an observability analysis of the prob-

1. Compare Fig. 6 in [18], which shows the graph of f as a function
of distance; and Fig 8ab, which shows the error for estimating f -1,

2. See Section 4.4.1 and Fig. 13 in [18]. Note the shrinkage of the
distribution (no quantitative measure is given in the paper).

3. See Section 4.4.2 in [18].



lem. The observability depends both on the manifold’s
local geometric properties (curvature) as well as on global
topological properties (connectedness). In R™, the scale is
not observable, but, surprisingly, it is observable in S?
and other spaces of nonzero curvature, which makes the
problem more constrained than in Euclidean space.

Section 5 discusses the performance measures that
are adequate for the problem. The Procrustes error (i.e.,
alignment up to rotations) is an intuitive choice, but
it is not admissible because it is not invariant to all
symmetries of the problem. We use the Spearman score
as an admissible and observable performance measure.

Section 6 describes our algorithm, which is an exten-
sion of the classical Shepard-Kruskal (SK) algorithm [24-
27]. The major extension is an extra step necessary to
recover the correct scale when it is observable; this step
is critical for accurate calibration.

Section 7 discusses the experimental results for the
case of camera calibration. The algorithm is evaluated
for three different cameras: a pin-hole (45° FOV), a fish-
eye (150° FOV), and an omnidirectional catadioptric cam-
era (360° x 100° FOV). The results obtained are compa-
rable with those obtained using conventional methods.
Section 8 presents the results on a mix of real and
synthetic datasets, which are meant to include all corner
cases of the observability analysis. This shows that our
algorithm is generic and works for other relevant cases
in addition to the case of camera calibration.

Finally, Section 9 concludes the paper and discusses
some possible directions for future work.

Supplemental materials: Appendix A contains the proofs
that have been omitted for reasons of space. Appendix B
contains the complete statistics and visualization for
the benchmarks discussed. References to materials in
Appendix A/B are written with the “A-" or “B-”
prefix; e.g., Definition A-5. The hyperlinks link to an
online copy of the documents. The attached multi-
media materials include the source code to the algo-
rithms and the intermediate processed results for the
test cases discussed. Datasets and code are available at
http:/ /purl.org/censi/2012 /camera_calibration.

2 PROBLEM FORMULATION

Let M be a Riemannian manifold, and let d be its
geodesic distance (introductory references for the differ-
ential geometry concepts used in this paper are [28-30]).
We formalize the problem of metric embedding from
non-metric measurements as follows.

Problem 1. Given a symmetric matrix Y € R"*%,
estimate the set of points § = {s;}]; in a given mani-
fold M, such that Y;; = f(d(s;,s;)) for some (unknown)
monotonic function f : [0,00) — R.

Without loss of generality, we assume the similarities
to be normalized so that —1 < Y;; <1 and Y;; = 1. This
implies f(0) = 1, and that f is nonincreasing. For camera
calibration, the manifold M will generally be the unit
sphere S?; however, we formulate a slightly more generic
problem. We will be especially interested in showing
how the observability of the problem changes if M is
chosen to be S! (the unit circle) or R™ instead of S2.

If the function f was known, it would be equivalent
to know directly the matrix of distances. The problem
of finding the positions of a set of points given their
distance matrix is often called “metric embedding”. In
the Euclidean case (M = R™), the problem is classi-
cally called Multidimensional Scaling (MDS), and was first
studied in psychometry in the 1950s. Cox and Cox [31]
describe the statistical origins of the problem and give
an elementary treatment, while France and Carroll [27]
give an overview of the algorithmic solutions.

The scenario described in Problem 1 is sometimes
called non-metric multidimensional scaling. The word
“non-metric” is used because the metric information,
contained in the distances d(s;, s;), is lost by the applica-
tion of the unknown function f. In certain applications,
it is not important for the reconstructed points to be
recovered accurately. For example, in psychometry, one
might use these techniques essentially for visualization
of high-dimensionality datasets; in that case, one only
wants a topologically correct solution. If that is the case,
one can just choose an arbitrary f different from the
true f; as long as f(0) = f(0), the results will be
topologically correct. However, in the camera calibration
setting, we are explicitly interested in obtaining a metri-
cally accurate solution. Note that Problem 1 is a chicken-
and-egg problem in the two unknowns f and {s;}!" ;:
knowing the function f, one can estimate the distances
as f71(Y;;), and use standard MDS to solve for {s;}1 ,;
conversely, knowing the distances, it is trivial to esti-
mate f. But is it possible to estimate both at the same
time? To the best of our knowledge, there has not been
any claim about whether accurate metric embedding from
non-metric measurements is possible. In this paper, we will
show that the answer depends on the properties of the
manifold M. Specifically, while for R™ the scale is not
observable, we show that accurate metric embedding is
possible for S?. Consequently, it is possible to calibrate a
camera from any statistics that respects the monotonicity
condition (1), even if the function f is a priori unknown.

Other problems with an equivalent formalization: We
briefly mention several other problems that can be for-
malized in the same way, and that will motivate us to
solve the problem in a slightly more generic way than
what strictly needed for camera calibration. In develop-
mental robotics and similar fields [19-21], a common
scenario is that an agent starts from zero knowledge
of its sensors, and its first concern is to recover the
geometry of the sensor (possibly a camera, but also
a range-finder or other robotic sensor) by considering
simple statistics of the sensor streams. In sensor net-
works (see, e.g., [32]), one basic problem is localizing
the nodes in space based on relative measurements of
wi-fi strength. Assuming the signal is a function of the
distance, we arrive to the same formalization, using R”
as the target manifold. More generally, this formalization
covers many embedding problems in machine learning,
where the data is assumed to be in a metric space, but the
available similarities, perhaps obtained by comparing
vectors of features of the data, cannot be interpreted
directly as distances in the original metric space.
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3 WHEN IS SIMILARITY A FUNCTION OF THE
PIXELS DISTANCE?

The basic assumption of this paper is that it is possible
to find a statistics of the pixel luminance that satisfies
the monotonicity condition (1). We state a result that
guarantees that any pairwise statistics is asymptotically
a function of the distance between the pixels, if the
camera undergoes uniformly random motion, in the
sense that the camera’s orientation (a rotation matrix R)
is uniformly distributed in SO(3) (the set of rotation
matrices).

Proposition 2. If the probability distribution of the camera
orientation R is uniform in SO(3), the expectation of a
function of the luminance of two pixels depends only on the
pixel distance: for all functions g : R x R — R, there exists a
function f:RT — R, such that

E{g(y(si), y(s5))} = f(d(si, 55)),
where E{-} denotes the expectation with respect to R.

Proof: See Section A-2 of Appendix A. O

In particular, this is valid for the correlation be-

tween pixel values, as the correlation can be written

as corr(yi,y;) = E{g(y(si), y(s;))} with g(y(si),y(s:)) =

(y(s:) —9)(y(si) — 7). Most other similarity statistics can
be written in the same fashion.

When is similarity monotonic?

Proposition 2 ensures that (1) holds for some function f,
but it does not ensure that such function f is monotone.
To find conditions that guarantee that f is monotone it is
necessary to introduce some model of the environment.
Essentially, f might not be monotone if there is some
long-range “structure” in the environment. We describe
an artificial counter example in which f is not monotone.

Example 3. Imagine a room, shaped like a parallelepiped
with the base of size L x L and height H > L
(Fig. 1). Suppose an omnidirectional camera is sus-
pended in the middle of the room, equidistant from
the walls, ceiling, and floor. From that position, the
images of ceiling and floor gets projected on the vi-
sual sphere in an area contained in a spherical cap
of radius § = 2arccos (H/vVH?+ L?). For example,
for L = 5m and H = 10m, we obtain § ~ 28°. This
implies that, if two pixels observe the ceiling at the same
time, they cannot be more than 28° apart. Assume that
the floor and the ceiling are painted of a uniform white,
and the walls have very intricate black-white patterns,
well approximated by white noise. We let the camera
undergo random rotational motion, and we compute
the correlation of the pixel luminance. Consider now
two pixels at distance d(s;,s;) = 60°. Note that any
two pixels at this distance will never look both at the
ceiling at the same time, because the apparent size of
the ceiling is § = 28°. Hence, there are three possibilities:
1) they are both looking at the walls; 2) one is looking
at the walls, another at the ceiling; 3) one is looking
at the walls, another at the floor. In all cases, one is
looking at the white noise on the walls. Therefore, the

correlation of two pixels streams at distance 60° is 0:
f(60°) = 0. Consider now two pixels at distance 180°
(one exactly opposite to the other on the visual sphere).
For these pixels, there are two possibilities: 1) they are
both looking at the walls; 2) one looks at the ceiling,
the other at the floor. Because floor and ceiling are
the same color, the luminance of these two pixels has
a slight positive correlation: f(180°) > 0. Therefore,
the function f is not monotonic, because f(0°) = 1,
£(60°) =0, and f(180°) > 0.

white ceiling —;

suspended camera — H

~ walls with

white floor

Figure 1: Environment used in Example 3.

4 OBSERVABILITY ANALYSIS

A symmetry of an estimation problem is any joint trans-
formation of the unknowns (in this case, the directions
8 = {s;} and the function f) that does not change the
observations (in this case, the similarities Y;;). Studying
the observability of the problem means describing what
symmetries are present. In this section, we first give a
tour of the symmetries of this problem, before presenting
the main result in Proposition 8.

Isometries: 1t is easy to see that the similarities Y;; are
preserved by the isometries of the domain M.

Definition 4. An isometry of M is a map ¢ : M — M
that preserves distances: d(¢(s;),¢(s;)) = d(s;, s;). We
denote the set of all isometries of M by Isom(M).

Sliding: This symmetry exists if f is not informative
enough. Define the “informative radius” of f as follows.

Definition 5. For a function f : R{ — R, let infr(f) be
the maximum r such that f is invertible in [0, r].

If the set § has two components distant more
than infr(f) from each other, one component can be
isometrically moved independently of the other, without
changing the observations (Fig. 2b); we call this “slid-

ing”.
Linear warping: We define a linear warping as a map that
scales the inter-point distances uniformly by a constant.

Definition 6. A linear warping of M is a map ¢, : M —
M such that, for some « > 0, for all s1,s5 € M,

d(@&(sl)a @Q(SQ)) = ad(slv 82)7

If a linear warping exists, then it is a symmetry of
the problem. In fact, suppose that (f,{s;}) is a solution

v white noise texture
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(d) Wiggling: an extreme case, with only three points.

Figure 2: Symmetries of the estimation problem, illustrated in the case M = S1. (a) Isometries (for S, rotations and reflections) are unobservable
because they preserve distances between points. (b) If f is non invertible on the whole domain, disconnected components of 8§ can move
isometrically independently from each other; we call this “sliding”. (c) In manifolds with zero curvature (e.g., R" and S?, but not S2) the scale is
not observable; formally, a linear warping (Definition 6) does not violate the problem constraints. (d) If the set of points is finite, the constraints

are not violated by small perturbations of the points, called “wigglings”.

of the problem. Construct another solution (f’,{s.}),
with f/ =1 f and s} = ¢,(s;). We would not be able to
distinguish between these two solutions, as they would
give the same observations.

Wiggling: A peculiar aspect of Problem 1 is that the
unknowns 8§ = {s;}?; live in a continuous space M,
but the observations Y” = f(d(si,s;)) are actually
equivalent to a set of discrete inequalities, a fact which
is very well explained by Agarwal et. al. [33]. In fact,
because the function f is completely unknown (the only
constraint being its monotonicity), all that we can infer
about the inter-point distances from the matrix Y is
their ordering: for all (,7),(k,1), if Yy E Y, then
we can infer d(s;,s;) § d(sk,s;), but nothing more.
Therefore, the sufficient statistics in the matrix Y;; is the
ordering of the entries, not their specific values. This raises
the question of whether precise metric reconstruction is
possible, if the available observations are a set of discrete
inequalities. In fact, given a point distribution {s;} of n
points, the position of the generic point s; is constrained
by n? inequalities (many of which redundant). Inequali-
ties cannot constrain a specific position for s; in the man-
ifold M; rather, they specify a small finite area in which
all constraints are satisfied. Therefore, for each solution,
an individual point has a small neighborhood in which
it is free to “wiggle” without Violating any constraint. In
general, we call these perturbations “wiggling”*:

Definition 7. A wiggling of a set {s;} C M is a map ¢ :
M — M that preserves the ordering of the distances:
for all ¢,7,k,1: d(s;,s;) < d(sk,s1) © d(p(s:),e(s;)) <
d(p(sk), p(s1))-

The size of the allowed wiggling decreases with the
density of points; for n points uniformly distributed
in M, one can show that the average wiggling space is
in the order of o(1/n) per single point (i.e., keeping the
others fixed). In the limit as the points become dense,
it is possible to show that wiggling degenerates to rigid
linear warpings. For very sparse distributions, the effect
of wiggling can be quite dramatic (Fig. 2d).

Main result: The following proposition establishes
which of the previously described symmetries are

wiggling; studying when the inclusions of these transformations
classes is the basis of the observability analysis reported in Ap-
pendix A.

4. Note that, be these definition, isometries C linear warping C

Table 1: Observability classes

class | space curvature  extra assumptions symmetries

A | S22 >0 - wigglings, isometries
B st 0 rad(8) + infr(f) > 2w wigglings, isometries
C |8 0 rad®)+infi(f) <2n VB Somenies
JE - vigglings fsometries
A H™ <0 - wigglings, isometries

present in the problem, as a function of the geometric
properties of the space M, the point distribution, and
the function f.

Proposition 8. Assume the set 8 = {s;} is an open subset
of M whose closure has only one connected component. Let
the available measurements be Y,; = f(d(s;,s;)), where f :
R{ — R is a monotone function with infr(f) > 0. Then:

o If M has nonzero curvature (e.g., S*), then it is possible
to recover f exactly, and 8 up to isometries.
o If Ml has zero curvature:

- If M is simply connected (e.g., R™), then it is
possible to recover f only up to scale, and 8 up to
isometries plus a “linear warping” (Definition 6).

- If Ml is not simply connected (e.g., S'), the scale can
be recovered if infr(f) is large enough.

For S!, this happens if

rad(8) + infr(f) > , )

where rad(8) is the radius of 8 (Definition A-1).
The observability breaks down as follows:

o “Sliding” occurs if 8 has multiple components with
Hausdorff distance greater than infr(f).

o If 8 has a finite number of points, there is a “wiggling”
uncertainty, in the order of o(1/n) for uniform distribu-
tions.

Proof: See Section A-3 in Appendix A. O
The results are summarized in Table 1 and the various
observability classes are labeled A-D for later reference.
We note that the observability results depend both on
the local geometrical properties of the space (curvature) as
well as the global topological properties (connectedness).
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5 MEASURING PERFORMANCE

The performance of an algorithm must be measured in
a way compatible with the observability of the problem.
We expect an error score to be invariant, meaning that
it is conserved by the symmetries of the problem. If a
score is not invariant, it is measuring something that
is not possible to estimate. We expect an error score
to be complete, meaning that it is minimized only by
the solutions of the problem. If an error score is not
complete, it cannot be used to distinguish solutions from
non solutions. Finally, we wish the error score to be
observable, in that it can be computed from the data,
without the ground truth.

Distances-based performance measures: In our case, sev-
eral classical error measures, widely used in other con-
texts, do not satisfy all these properties. The Procrustes
error is defined as the mean distance between the solu-
tion {s;}7; and the ground truth {3;},, after choosing
the best isometry that makes the two sets overlap [34].

Definition 9. The Procrustes error ey is defined as:

min
pElsom(M)

1 n
epr({5i}, {si}) = - > d(sie(si). G

i=1
This error score is unsuitable in our case, because,
while it is invariant to isometries, it is not invariant to
the other symmetries, namely linear warpings and wig-
glings. This means that, if we are considering an instance
of the problem where the scale is not observable, using
the Procrustes error can produce misleading results (we
will show this explicitly in Section 8). Moreover, there
is the problem that not all points contribute equally to
this performance measure. When aligning the two points
sets, the points near the center of the distribution will be
always more aligned, and the errors will accumulate for
the points at the borders of the distribution. To eliminate
this problem, we can consider the error on the inter-point
distances rather than the absolute position of the points.

Definition 10. The mean relative error e, is the mean error
between the inter-point distances:

alFih fsh) 2 o5 S 150 5) — dlsi sl @)

4,j=1

This error function is still invariant to isometries, does
not need an optimization problem to be solved, and
all pairs of points contribute equally. Moreover, it can
be easily modified to be invariant to linear warpings:
because linear warpings scale the distances uniformly,
we achieve invariance by optimizing over an unknown
scale.

Definition 11. The mean scaled relative error eg is the
relative error after the optimal warping:

bos D (s — ad(sis)l )

ij=1

esr({5i}, {s:}) = mi
a>

This is invariant to warpings. However, it is still not
invariant to wigglings. To achieve invariance to wiggling
we have to change approach.

Spearman-correlation-based performance measures: We in-
troduce the Spearman score: an invariant, complete, and
observable score for all observability classes. It is based
on the idea of Spearman correlation, which measures a
possibly nonlinear dependence between two variables,
in contrast with the usual correlation, which can only
assess linear dependence. The Spearman correlation is a
common tool in applied statistics, but it is not widely
used in engineering. The idea is that, to assess nonlinear
relations, we should consider not the value of each
datum, but rather their order (or rank) in the sequence.

Definition 12. Let order : R™ — Perm(n) be the function
that computes the order (or rank) of the elements of a
vector. For example, order([2012, 1, 15]) = [2,0, 1].

Definition 13. The Spearman correlation between two
sequences x,y is the Pearson correlation of their order
vectors: spear(z,y) £ corr(order(x), order(y)).

Lemma 14. The Spearman correlation detects any nonlinear
monotonic relation: spear(x,y) = £1 if and only if y = g(z)
for some monotonic function g.

We use this fact to check whether there exists a mono-
tonic function f such that Y;; = f(d(s;,s;)). Given a
solution {s;}";, we compute the corresponding distance
matrix, and then compute the Spearman correlation of
the distance matrix to the similarity matrix. To that end,
we need to first unroll the matrices into a vector using

the operator vec : R**" — R™".

Definition 15. The Spearman score of a solution {s;} ,
is the Spearman correlation between the (flattened) sim-
ilarity matrix and the (flattened) distance matrix D =
[Dij] = [d(si, s5)]:

pep({s:}) 2 [spear(vec(Y), vec(D))|. (6)

The Spearman score is invariant to all symmetries of
the problem, including wigglings, which by definition
preserve the ordering of the distances. It is also complete
because if psp({si}, Yi;) = 1, then there exists an f such
that Yij = f(d(s27 Sj)).

If the data is corrupted by noise, psp = 1 might not be
attainable. In that case, it makes sense to normalize the
score by the score of the ground truth.

Definition 16. The Normalized Spearman score is

ey gopy & Pp({si))
psp({ z}v{ z}) psp({gi}).

Table 2 summarizes the properties of the performance
measures discussed.

@)

6 ALGORITHM

We describe an extension of the classic Shepard-Kruskal
algorithm (SK) [24-27] that we call SKv+w (SK variant +
warping). The basic idea of SK is to use standard MDS®
on Y;; to obtain a first guess for {s;}. Given this guess,

5. Given an n x n distance matrix D, the best embedding in R™ can
be found by solving for the top m eigenvectors of an n x n semidefinite
positive matrix corresponding to a “normalized” version of D [27, 34].



Algorithm 1 The SKv+w embedding algorithm for a generic manifold M.

Input: similarities Y € R"*"; manifold-specific functions: MDSy, distancesy, inity;. Output: S € M".

S° = MDSwu(D°) # Compute first guess by MDS
for k = 1,2,... until s* converged:

D* = distancesy(S*)

return MDSy(a*D*) # Embed the warped distances

1
2
3
4
5
6
7
8
9
10
11
12
13 return S*

for D° in initw(order(Y)): # Some manifolds need multiple starting points

DF = distancesy(S* 1) # Compute current distances

D¥ = vec™!(sorted(vec(D))[order(vec(Y))]) # Nonparametric fitting and inversion of f.
S* = MDSy(D¥) # Embed according to the modified distances.

s® = spearman_score(S*,Y) # Use the Spearman score for checking convergence

S* = S*", where k* = arg maxy, s* # Find best iteration according to the score.
if M is S™,m > 2: # Find optimal warping factor to embed in the sphere.

a* = argming o, 11 /012, where {o§*} = singular_values(cos(aD™))

M-specific initializations: initgm (0Y) 2 0Y;

initgm (0Y) £ {moY /n?,2m0Y /n?}.

Table 2: Properties of performance measures

complete?

invariant?
observable?
obs.class | A B C D|A B C D
Procrustes error (3) | Xt Xt X§ X§|v v X X X
Relative error (4) | Xt Xt X§ X§|v v X X X
Scaled relative error (5) | Xt Xt X§ X§|v v v V X
Spearman score (6) | v v VvV V |V V V V v

t: Not invariant to wigglings.
§: Not invariant to linear warping and wigglings.

one can obtain a rough estimate f of f; given f, one
can apply f~! to Y;; to obtain an estimate of the
distances D;;; then one solves again for {s;} using MDS.
The SK algorithm does not give accurate metric recon-
struction. Our goal was to obtain a general algorithm
that could work in all corner cases of the observability
analysis. The algorithm described here will be shown
to be robust across a diverse set of benchmarks on
different manifolds, with a vast variation of shapes
of f and noise levels. To this end, we extended the SK
algorithm in several ways. In the following, some parts
are specific to the manifold: we indicate by MDSy a
generic implementation of MDS on the manifold M, so
that MDSg~ is the classical Euclidean MDS, and MDSg~
is the spherical MDS employed by Grossmann et. al..

EM-like iterations (lines 37 of Algorithm 1): A straight-
forward extension is to iterate the alternate estimation
of {s;} and f in an EM-like fashion. This modification
has also been introduced in other SK variants [27]. This
iteration improves the solution, but still does not give
metrically accurate solutions.

Choice of first guess for the distance matrix (line 1):
Assuming that the similarities have already been nor-
malized (-1 < Y;; < 1), the standard way to obtain
an initial guess DY; for the distance matrix is to linearly
scale the similarities, setting DY. o 1 — Y;;. This implies
that, given the perturbed similarities Y7; = g(Y;;) for
some monotone function g, the algorithm starts from a
different guess and has a different trajectory. However,
because the sufficient statistics order(Y;) = order(Y;;)

is conserved, we expect the same solution. The fix is to
set DY; oc order(Y;;) (making sure the diagonal is zero),
so that the algorithm is automatically invariant to the
shape of f.

Multiple initializations (line 1): We observed empirically
that multiple initializations are necessary for the case
of S™. In particular, if one scales Df; such that 0 <
D?j < m, all solutions generated have diameter < ; if
one scales D,?j such that 0 < D?j < 27, all solutions have
diameter > 7. Extensive tests show that one of the two
starting points always allows convergence to the true
solution (the other being stuck in a local minimum). In
Algorithm 1 this is represented by a manifold-specific
function inity; returning the list of initial guesses for D.

Non-parametric inversion of f (line 5): We have to find
some representation for f, of which we do not know the
shape, and use this representation to compute f~!. In
this kind of scenarios, a common solution is to use a
flexible parametric representation for f, such as splines
or polynomials. However, parametric fitting is typically
not robust to very noisy data. A good solution is to use
completely non-parametric fitting of f. Suppose we have
two sequences {z;}, {y;} which implicitly model a noisy
relation y; = f(x;)+noise for some monotone f. Our goal
is to estimate the sequence {f~'(y;)}. Let sorted({x;}) be
the sorted sequence {x;}. Then non-parametric inversion
can be obtained by using the order of {y;} to index into
the sorted {z;} array®:

{7 (i)} = sorted({;})lorder({y:})1.

This is seen in line 5 applied to the (unrolled) distance
and similarity matrices.

Spearman Score as convergence criterion (line 3): The iter-
ations are stopped when the Spearman score converges.
In practice, we observed that after 4-7 iterations the
score has negligible improvement for all benchmarks.
This score is also used to choose the best solution among
multiple initializations (line 8).

6. The square brackets here indicate indexing into the array, as in
most programming languages (e.g., Python).



Warping recovery phase (lines 9-12): The most important
change we introduce is a “warping recovery” phase that
changes the qualitative behavior of the algorithm in the
case of S™,m > 2. As explained in the observability anal-
ysis, in curved spaces the scale of the points distribution
is observable. However, the SK algorithm (i.e., lines 3-7
of Algorithm 1) cannot compensate what we call a linear
warping (Definition 6); in fact, it is easy to see that if Dy
is a fixed point of the loop, also aDy, for a > 0, is
a fixed point. In other words, the “null space” of the
Shepard-Kruskal algorithm appears to be the group of
linear warpings. Therefore, we implemented a simple
algorithm to find the scale that best embeds the data onto
the sphere, based on the fact that if D is a distance matrix
for a set of points on S™, then the cosine matrix cos(D)
must have rank m + 1. Therefore, to find the optimal
scale, we look for the optimal o > 0 such that cos(aeD)
is closest to a matrix of rank 3. This is implemented
in lines 9-12, where the ratio of the (m + 1)-th and
the (m + 2)-th singular value is chosen as a robust
measure of the rank.

While it would be interesting to observe the im-
provements obtained by each variation to the original
algorithm, for reasons of space we focus only on the
impact of the warping recovery phase. We call SKv the
SKv+w algorithm without the warping recovery phase
(i.e., without the lines 9-12).

Algorithm complexity: The dominant cost of SKv+w lies
in the truncated SVD decomposition needed for MDSy
in the inner loop; the exact decomposition takes O(n?),
which is, in practice, in the order of 5 ms for n = 100
and 500 ms for n = 1000 on current hardware’. There
exist faster approximations to speed up the MDS step;
see, e.g., the various Nystrom approximations [35].

7 CAMERA CALIBRATION RESULTS

We divide the experimental evaluation in two sections.
In this first section, we describe the results of the method
for camera calibration. In Section 8, we describe a series
of experiments with artificial datasets to demonstrate the
various corner cases of the observability analysis.
Hardware: We use three different cameras, covering all
practical cases for imaging systems: a perspective camera
(“FLIP” in the following), a fish-eye camera (“GOPRO”),
and an omnidirectional catadioptric camera (“OMNI”).
FLIP: The Flip Mino HD [36] is a $100 consumer-level
video recorder (Fig 3a). It has a 45° FOV; it has a
3X optical zoom, not used for these logs. GOPRO: The
GOPRO camera [37] is a $300 rugged professional-level
fish-eye camera for outdoor use (Fig 4a). The field of
view varies slightly between 127° and 170° according
to the resolution chosen; for our tests, we chose a res-
olution corresponding to a 150° field of view. OMNTI:
We used a custom-made omnidirectional catadioptric
camera (Fig. 5a). This is a small, compact system very
popular for micro aerial platforms, such as quadro-
tors [38, 39]. The camera is created by connecting a

7. Tests executed using Numpy 1.5, BLAS compiled with Intel MKL,
on a 2.67Ghz Intel Xeon core.

perspective camera to a hyperbolic mirror. The resulting
field of view is 360° (horizontally) by 100° (vertically).
The images have much lower quality than the FLIP and
GOPRO (Fig. 4b). Table 3 summarizes the statistics of the
three datasets.

Table 3: Dataset statistics
camera FOV fps resolution subsampling n  length
FLIP 45° 30 1280x720 24 x 24 grid 1620 57416
GOPRO 150° 30 1280x720 24 x 24 grid 1620 29646
OMNI 360° 20 640x480 8 x8grid 1470 13131

Manual calibration: We calibrated the cameras using
conventional techniques, to have a reference to which
to compare our method. We calibrated the FLIP using
the Matlab Calibration Toolbox [3], which uses a pin-
hole model plus second-order distortion models. We cal-
ibrated the GOPRO and the OMNI using the OCamCalib
calibration toolbox [13], using a fourth-order polynomial
for describing the radial distortion profile [6, 7, 40].
Both methods involve printing out a calibration pattern
(a checkerboard), taking several pictures of the board,
then identifying the corners of the board using a semi-
interactive procedure. Some examples of the calibration
images used are shown in Fig. 3c and 4c.

Data collection: The environment in which the log is
taken influences the spatial statistics of the images. The
data logs were taken in a diverse set of environments.
For the FLIP, the data was taken outdoors in the Cal-
tech campus, which has a large abundance of natural
elements. For the GOPRO, the data was taken in the
streets of Philadelphia, a typical urban environment.
For the OMNI, the data was taken indoors in a private
apartment and an office location. Examples of the images
collected are shown in Fig. 3b, 4b, 5b; the full videos are
available on the website. In all cases, the cameras were
held in one hand and waved around “randomly”, trying
to exercise at least three degrees of freedom (shoulder,
elbow, wrist), so that the attitude of the camera was
approximately uniformly distributed in SO(3). We did
not establish a more rigorous protocol, as these infor-
mal instructions produced good data. Data taken by
exercising only one degree of freedom of the arm (e.g.,
forearm, with the wrist being fixed) did not satisfy the
monotonicity assumption. Another example of data that
we tried that did not satisfy the assumption was data
from an omnidirectional camera mounted on a car®.

Data processing: For all cameras, the original RGB
stream of each pixel was converted to a one-dimensional
signal by computing the luminance. We also sub-
sampled the original images with a regular grid so
that we could work with a reduced number of points.
For the OMNI data, we used masking to only consider
the annulus around the center (Fig. 5c), therefore ex-
cluding the reflection of the camera in the mirror and
the interior of the box which lodged the camera. We
used the correlation between the pixel luminance val-
ues as the similarity statistics: Y;; = corr(y;(t), y;(¢)),

8. Because the car motion is mostly planar, a portion of the pixels
always observes the sky (a featureless scene), while others observe the
road (a scene richer in features).



(a) The Flip Mino (c) Calibration patterns

Figure 3: The FLIP camera is a consumer-level portable video recorder. The data for calibration is taken while walking in the
Caltech campus, with the camera in hand, and “randomly” waving the arm, elbow, and wrist.

(@) The GOPRO camera (b) Some frames from the calibration sequence (c) Calibration pattern

Figure 4: The GOPRO camera is a rugged consumer camera for outdoors use. It uses a fish-eye lens with 170° field of view.

(a) Catadioptric camera (b) Some frames from the calibration sequence (c) Mask used

Figure 5: Note the small dimensions of this omnidirectional catadioptric camera, very well suited for aerial robotics applications.
The data quality is much lower than for the FLIP and GOPRO data.

Figure 6: Calibration results for the FLIP data using corr(y) as the similarity statistics. See top of page 10 for explanation.
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Legend for Figure 6,7,8: The first row (fig. a,b,c) shows the results of calibration using conventional methods, while the second
row (d,e f) shows the results of our algorithm. The first column (a, d) shows the points distribution on the sphere, displayed
using azimuth/elevation coordinates. The second column (b, e) shows the joint distribution of pixel distance (d(s;,s;)) and
pixels similarities (Y;;), which, in this case, is the correlation. This is the function f that we should fit. Finally, the third column
(c, f) shows order(d(ss, s;)) vs. orderd(s;, s;) and their correlation, from which we derive the Spearman score.

Figure 7: Calibration results for the GOPRO data using corr(y) as the similarity statistics. See above for explanation.
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Calibration results for the OMNI data using corr(y) as the similarity statistics. See the top of this page for explanation.
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where y;(t) indicates the luminance of the i-th pixel at
time ¢. This simple statistics was the most useful across
cameras (Section 7.2 discusses other possible choices of
the similarity statistics). We found that the monotonicity
condition is well verified for all three cameras. To plot
these statistics, we assume the calibration results ob-
tained with conventional techniques as the ground truth.
The joint distribution of the similarity Y;; and the dis-
tance d(s;, s;) is shown in Fig. 6b, 7b, 8b. For these logs,
the spatial statistics were quite uniform: at a distance
of 45°, the inter-pixel correlation was in the range 0.2-0.3
for all three cameras. For the GOPRO and OMNI data, the
correlation is 0 at around 90°. The correlation is negative
for larger distances. The different average luminance be-
tween sky and ground (or floor and ceiling) is a possible
explanation for this negative correlation. The OMNI data
is very noisy for distances in the range 90°-180°, as
the sample correlation converges more slowly for larger
distances. To check that the monotonicity condition is
satisfied, regardless of the shape of f, it is useful to look
at the Spearman diagrams in Fig. 6¢, 7c, 8c, for the FLIP,
GOPRO, and OMNI, respectively. These diagrams show,
instead of similarity (Y;;) versus distance (d(s;, s;)), the
order of the similarities (order(Y;;)) versus the order of
the distances (order(d(s;,s;)). The correlation of those
gives the Spearman score (Definition 15). If there was
a perfectly monotonic relation between similarity and
distance, the Spearman diagram would be a straight line,
regardless of the shape of f, and the Spearman score
would be 1 (Lemma 14).

7.1

The complete statistics are presented in Appendix B
in Table B-1. The results of manual calibration and
calibration using our method are graphically shown in
Fig. 6d, 7d, 8d. The plots show the data using spherical
coordinates (azimuth/elevation).” There is a number of
intuitive remarks that can be made on the results by
direct observations of the resulting point distributions
(or, better, its 3D equivalent). For the FLIP data (Fig. 6d)
the reconstructed directions lie approximately on a grid,
as expected. For this data, and the GOPRO as well, the
estimated points are more regular at the center of the
field of view than on the borders. This is probably due to
the fact that the pixels at the border have less constraints.
The estimated FOV is very similar to the result given
by the manual calibration (43° instead of 45°). For the
GOPRO data (Fig. 7d) the shape of the sensor is well
reconstructed, except for the two upper corners of the
camera. The estimated FOV matches the manual calibra-
tion (153° instead of 150°). For the OMNI data (Fig. 8d)
the shape of the sensor is overall well reconstructed,
but it is more noisy than the FLIP or GOPRO. This is to
be expected as the monotonicity relation is not as well
respected (Fig. 8e).

Calibration results

9. It is challenging to visualize 3D data with 2D projections, because
any projection will distort some part of the data. For this reason, we
also provide 3D visualization using MATLAB .fig figures, which allows
the user to rotate in 3D the data. Click the following links to access
the .fig files: 4 mino, . GOPRO , 4\ OMNI .
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Table 4: Calibration results (normalized Spearman score)

dataset norm. Spearman score p,
8 Fov f g.truth  SKv  SKv+w MDS
FLIP 45° corr(y) 1 0.9998 1.0006 0.9709
GOPRO 150° corr(y) 1 1.0027 1.0029 0.9702
OMNI  360° corr(y) 1 1.0288 1.0288 0.9831

(See complete results in Table B-1b)

Table 5: Calibration results (Procrustes error)

dataset Procrustes error
8 FOV f SKv  SKv+w MDS
FLIP 45° corr(y) 24.05° 0.74° 15.16°
GOPRO 150° corr(y) 4.72° 3.53° 6.20°
OMNI  360° corr(y) 9.48° 9.48° 32.43°
(See complete results in Table B-1c)

It can be concluded that our method gives results
reasonably close to manual calibration, even for cases
like the OMNI where the monotonicity condition holds
only approximately. As predicted by the observability
analysis, the scale can be reconstructed even without
knowing anything about the function f.

We now look at quantitative performance measures.
As explained before, the only admissible performance
measure is the Spearman score, shown in Table 4. When
judged by this performance measure, the SKv+w algo-
rithm is slightly better than the manual calibration (the
normalized Spearman score is larger than 1). In other
words, the estimated distribution is actually a better fit
of the similarity data than the manual calibration results.
This implies that the imprecision in the estimate is a lim-
itation of the input data rather than of the optimization
algorithm; to obtain better results, we should improve
on the data rather than improving the algorithm.

The Procrustes error (Equation 3) is the most intuitive
performance measure (but not invariant to wiggling).
The results are shown in Table 5. The error with respect
to manual calibration is an average of 0.7° for the FLIP
data, 3.5° for the GOPRO data, and 9.5° for the OMNI
data. The table shows both the results with and without
the warping phase (SKv+w and SKv, respectively). This
makes it clear that the warping phase is necessary to
obtain a good estimate of the directions, especially for
the FLIP data. The difference is lower for the GOPRO data
and negligible for the OMNI data. Intuitively, the warping
phase takes advantages of what can be called “second-
order” constraints, in the sense that they allow us to
establish the scale at small FOV, but they disappear as the
FOV tends to zero, because a small enough section of S?
looks flat (like R?). Finally, it is clear that the accuracy of
MDS is much lower than SKv or SKv+w. This fact is best
seen visually in Fig. B-1j in the supplemental materials.
In general, MDS obtains topologically correct solutions,
but the scale is never correctly recovered, or the data
appears otherwise deformed.

These results seem to outperform the results shown
in Grossmann ef. al.: compare, for example, Figure 13
in [18]. Note that their method assume that the func-
tion f is known, obtained through a separate calibration


http://purl.org/censi/2012/camera_calibration/2012-camera_calibration-tables.pdf#table.caption.1
http://purl.org/censi/2012/camera_calibration/mino.fig
http://purl.org/censi/2012/camera_calibration/GOPRb.fig
http://purl.org/censi/2012/camera_calibration/omni.fig
http://purl.org/censi/2012/camera_calibration/2012-camera_calibration-tables.pdf#subtable.B-1.2
http://purl.org/censi/2012/camera_calibration/2012-camera_calibration-tables.pdf#subtable.B-1.3
http://purl.org/censi/2012/camera_calibration/2012-camera_calibration-tables.pdf#subfigure.B-1.10

phase. In principle, with much more information, their
results should be better. Without having access to their
data, we can only speculate on the reason. Perhaps the
simplest explanation is that they do not “wave around”
the camera for collecting the data; and therefore the
monotonicity condition might not be as well satisfied.
Moreover, they use a similarity statistics which has
very low informative radius (30°), which might cause
problems, even though the robust nonlinear embedding
algorithm they use should be robust to this fact.

7.2 Results for different similarity statistics

Proposition 2 ensures that any statistics is a function
of the pixel distance, but this result is limited in three
ways: 1) it is only an asymptotic result, valid as time
tends to infinity; 2) it assumes a perfectly uniform
attitude distribution; and 3) it does not ensure that
the function f is invertible (monotonic). Therefore, it is
still an engineering matter to find a statistics which is
1) robust to finite data size; 2) robust to a non-perfectly
uniform trajectory; and 3) has a large invertible radius.
An exhaustive treatment of this problem is outside the
scope of this paper and delegated to future work. Here,
we briefly show the results for three other statistics in
addition to the luminance correlation. All statistics are
defined as the correlation of an instantaneous function
of the luminance and can be efficiently computed using
streaming methods. The first variant consists in applying
an instantaneous contrast transformation ¢ : y +— y2 to
the luminance before computing the correlation:

Yij = corr(e(yi(t)), c(y;(1))) ®)

The second statistic is the correlation of the temporal
derivative y = %y of the luminance:

Yij = corr( (), y;(t)) )

This was inspired by recent developments in neuromor-
phic hardware [41]. Finally, we consider the correlation
of the sign of the luminance change, as it is invariant to
contrast transformations:

Yij = corr(sgn(yi(t)), sgn(y;(t)) ). (10)

Table 6 shows the Spearman score obtained by using
these on the OMNI data (the most challenging dataset).
We find, in this case, that the contrast-scaled lumi-
nance (8) is slightly better than the simple correlation;
the solution found is qualitatively similar (Fig. B-7d).
The two other similarity statistics (9) and (10) have much
lower scores; for them, the monotonicity assumption is
not well verified: their distributions are not informative
for large distances (Fig. B-8, B-9). It is clear that there is
a huge design space for similarity statistics. In the end,
we did not find any statistic which was better than the
simple correlation uniformly for all our three data sets.
Therefore, we consider this an open research question.

8 ADDITIONAL EVALUATION

The main purpose of this section is to provide experi-
mental results that cover all corner cases of the observ-
ability analysis in Proposition 8.
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Table 6: Results with different similarity statistics

dataset Spearman score

S f g.truth  SKv+w
OMNI corr(y) 0.9173 0.9438
OMNI  corr(c(y)) 0.9212 0.9465
OMNI corr(g)) 0.8550 0.9211
OMNI corr(sgn(y)) 0.8739 0.9077

(See complete results in Table B-3a)

Observability class A : The observability class A cor-
responds to distributions in S? where the scale is ob-
servable, and it is possible to reconstruct the directions
up to wiggling. To illustrate the effect of wiggling, we
generated some synthetic datasets, so that the effect of
wiggling can be seen independently of the measurement
noise. We use as the ground truth the distribution given
by manual calibration, and we use as our function f the
kernel fep(d) = exp(—0.52d), which is the exponential
kernel that best fits the FLIP data (Fig. 6b). The results are
shown in Table 7. We can see that the Spearman score
for SKv+w is 1, meaning that the solution found is a
perfect solution to the problem. However, the Procrustes
error is 1.25°. This is the practical demonstration that
the Procrustes error is not admissible. This synthetic
experiment gives us a sense of what is the accuracy in
the directions domain that we can obtain in practice,
even if we had perfect measurements of the correlation
or other statistics. The Procrustes error for the real data
is in the order of 1°; this means that the contribution of
the noise is commensurable to wiggling, and the results
would benefit more from using a denser grid rather than
longer logs. The Procrustes error is negligible for the
omnidirectional data. This shows that an omnidirectional
directions distributions makes the problem overall more
constrained.

Table 7: Benchmarks for class A (S*) with synthetic data

dataset Spearman score  Procrustes error

8 Fov f g.truth SKv+w  g.truth SKv+w
FLIP 45° fexp 1 1.000 0° 1.25°
GOPRO 150° fexp 1 1.000 0° 0.90°
OMNI  360° fexp 1 1.000 0° 0.00°

(See complete results in Table B-2a and B-2c)

Observability class B : The observability class B corre-
sponds to distributions on S! where the scale is observ-
able due to the non-simply connected topology and a
function f with large informative radius. For this set
of benchmarks we used synthetic data. We used three
different functions f, shown in Table 8. The function

Table 8: Kernels used in synthetic benchmarks

f infr(f)

fin(d) = 0.5 —0.5d 180°
fsmooth(d) = COSS(d) 180°
fsteep(d) = max{cos3(d),0} 90°

fiin(d) is linear in the distance d. The function fsmeoth(d)
is nonlinear in the distance, but still invertible on the
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whole domain. The function feeep is equal to fsmooth
for d € [0,90°] and O for d > 90°. This implies that
infr( fsteep) = 90°. We simulated random distributions of
points in S! with 315° FOV. This satisfies condition (2)
because 315°/2+90° > 180°. Table 9 shows the diameter
of the estimated distribution. In all cases, SKv recovers
the scale of the distribution. Instead MDS recovers the
scale correctly only for linear f.

Table 9: Benchmarks for class B (S', observable scale)

dataset diameter
S FOV f MDS SKv
random dist. 315° fji, 318° 318°
random dist. 315° fsteep 127° 312°
random dist. 315°  fomooth 114° 316°

(See complete results in Table B-4c and B-4a)

Observability class C: The observability class C corre-
sponds to the case of S! in which the scale is not observ-
able, because f is not informative enough. For this class,
we use a mix of synthetic data and real data. For the
synthetic data, we simulated a random distribution of
directions on S' with FOV 45° and 90°. For the real data,
we extracted the center scan line of the FLIP and GOPRO
data. We know that these pixels lie approximately on a
great circle of S?, therefore this data can be embedded
in S!. Table 10 shows the Spearman score and the Pro-
crustes error obtained by MDSg» and SKv. The most in-
teresting fact about these benchmarks is that they clearly
show that, without a proper observability analysis, one
might reach erroneous conclusions by considering a non-
admissible performance measure. If one were to compare
MDS and SKv only on the Procrustes error, one would
conclude erroneously that MDS performs better than
SKv. However, in reality, SKv gives better results, as can
be seen from the Spearman score. What is happening is
that, for the non-admissible measure, the intrinsic bias
of MDS is better adjusted to the dataset bias.

Table 10: Benchmarks for class C (S!, unobservable scale)

dataset Spearman score  Procrustes error
8 FovV f MDS SKv MDS SKv
FLIP (center) 23° corr(y) 0.9706 0.9999 13.52° 25.62°
random dist. 45° fomooth  0.9987 0.9999 7.47° 20.08°
GOPRO (center) 75° corr(y) 0.9592 0.9988 8.58° 13.01°
random dist. 90° fsmooth  0.9853 0.9997 9.22° 8.41°

(See complete results in Table B-5¢ and B-5a)

Observability class D: The observability class D cor-
responds to the Euclidean case, where the scale is not
observable. For this class we used exclusively synthetic
data. We simulated a random distribution of points on
the [0,1] x [0,1] square, and for the similarities we used
the three functions fiin, fsteep, fsmooth- The data in Table 11
is a simple verification of the fact that MDS provides
a correct reconstruction only if similarity is a linear
function of the distance, while SKv provides the correct
solution regardless of the shape of f.
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Table 11: Benchmarks for class D (R?)

dataset norm. Spearman score pg,

8 f g.truth MDS SKv
random square fj, 1 1.000 1.000
random square fsieep 1 0.7706 1.000
random square fsmooth 1 0.9182 1.000

(See complete results in Table B-6a)

9 CONCLUSIONS

This paper presented a new calibration method that does
not need any known calibration pattern (e.g., checker-
boards), known camera motion, or another calibrated
apparatus. It does not have any assumption on the cam-
era model, and is therefore able to calibrate any single-
view point cameras. We have shown that calibration-by-
correlation is an instance of the problem of metric em-
bedding from non-metric measurements, which appears
naturally in many other fields. So far, it has implicitly
been assumed that it was not possible to recover the
metric information (scale of the distribution) from non-
metric measurements. We have given a comprehensive
discussion of the observability of the problem, showing
that it depends both on the local geometrical charac-
teristics (curvature) as well as the global topological
properties (connectedness) of the particular manifold
considered. While in Euclidean space it is never possible
to recover the scale, it is possible in spaces of nonzero
curvature, or in non-simply connected manifolds such
as S!. We have presented an optimization algorithm
based on the classical Shepard-Kruskal algorithm, with
several additions that make it robust across manifolds
and a wide variety of benchmarks. The main addition
is a “warping recovery phase” that we have shown
necessary to obtain the correct scale in the spherical case.
In addition to the camera calibration problem, we evalu-
ated the algorithm on a series of synthetic benchmarks,
making sure it works as expected in all corner cases
of the observability analysis. Therefore, it will likely be
useful for problems other than camera calibration that
have a similar formalization.

Future work: On the theoretical side, there is still much
to do in the analysis of Problem 1. We have provided an
observability analysis, but what is missing is some result,
in the spirit of the Cramér-Rao bound, which would
answer the question of what noise level can be tolerated
on f to obtain a given accuracy on metric reconstruction.
Because the observations can be interpreted as a set of
inequalities, while the unknowns live in a continuous
space, standard techniques cannot be used. On the algo-
rithmic side, there is still much to do about proving the
convergence properties of the algorithm. The algorithm
appears to be robust across diverse benchmarks, but we
do not have proofs of global convergence. The difficulty
in the analysis is that the core of the algorithm is a
mix of “continuous” operations (e.g. computing the SVD
of a matrix) and “discrete” operations (e.g., reordering
the elements of the matrix); the interaction of these
continuous and discrete operations is hard to analyze
with conventional techniques. Several other extensions
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are motivated by the problem of camera calibration. As
noted before, it is an open question whether one can find
a better similarity statistics than the correlation. It would
also be useful to study extensions of the problem to non-
monotonic functions f, or that allow for the statistics to
vary in different parts of the field of view. This would
allow to use as source data logs in which the camera
attitude is not uniform in SO(3), such as the logs from
autonomous vehicles. It would also be useful to extend
this method to non-central cameras, where each pixel has
a direction s; € S? and a spatial position in R®. Finally,
our most immediate current work consists in integrating
this method with parametric methods that use a prior
knowledge of the camera model [7], to obtain the best
of both worlds.
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